
Combining Gameplay Data With Monte Carlo Tree Search
To Emulate Human Play

Sam Devlin, Anastasija Anspoka, Nick Sephton, Peter I. Cowling
Digital Creativity Labs, Department of Computer Science, University of York, UK

Jeff Rollason
AI Factory Ltd., Pinner, Middlesex, UK

Abstract

Monte Carlo Tree Search (MCTS) has become a popular
solution for controlling non-player characters. Its use has
repeatedly been shown to be capable of creating strong
game playing opponents. However, the emergent playstyle
of agents using MCTS is not necessarily human-like, be-
lievable or enjoyable. AI Factory Spades, currently the top
rated Spades game in the Google Play store, uses a variant
of MCTS to control non-player characters. In collaboration
with the developers, we collected gameplay data from 27,592
games and showed in a previous study that the playstyle of
human players significantly differed from that of the non-
player characters. This paper presents a method of biasing
MCTS using human gameplay data to create Spades playing
agents that emulate human play whilst maintaining a strong,
competitive performance. The methods of player modelling
and biasing MCTS presented in this study are generally ap-
plicable to digital games with discrete actions.

Introduction
It is now feasible to collect vast quantities of high granular-
ity data from digital games (Bohannon 2010). This ease of
access to gameplay data has given rise to an increased use
of data mining approaches during various stages of game
development (El-Nasr, Drachen, and Canossa 2013). Simul-
taneously, Monte Carlo Tree Search (MCTS) has become
a popular solution for Artificial Intelligence (AI) in digi-
tal games. Its use has repeatedly been shown to be capable
of creating strong game playing opponents. However, the
emergent playstyle of agents using MCTS is not necessar-
ily human-like, believable or enjoyable. This paper presents
a method of biasing MCTS using human gameplay data to
create agents that emulate human play whilst maintaining a
strong, competitive performance.

To demonstrate the method, we apply it to a digital im-
plementation of the traditional card game Spades based on
gameplay data collected from human players of AI Factory
Spades; the leading commercial implementation available
for Android devices. In previous work with the game’s de-
velopers, we analysed these gameplay traces and showed
significant differences in the playstyle of the non-player
characters controlled by their current implementation of

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

MCTS compared to human players (Cowling et al. 2015).
In this paper, using the methodology proposed, we empiri-
cally demonstrate that it is feasible to emulate human play
by indirect imitation whilst still maintaining equivalent play
strength to an unbiased agent.

Furthermore, we argue that the methodology we have ap-
plied could feasibly be applied to any digital game currently
using MCTS provided gameplay trace data is collected and
the agent’s actions are (or could be modelled as) discrete. In
particular, we note that the common usage of tech or pro-
gression trees in many modern games provides a suitable
potential application for this method. Creating agents that
emulate human play can inform game design (Zook, Har-
rison, and Riedl 2015) and, given potential applications of
MCTS in non-game contexts (e.g. simulations, decision sup-
port systems or operations research), the same methodology
could again be applied to provide more human-like agents.

The remainder of the paper is organised as follows. The
next section covers relevant previous work on this topic. The
two sections following this detail the key contribution of this
paper; our methodology of combining gameplay data and
MCTS to emulate human play whilst maintaining playing
strength of the agent. The paper then ends with a discussion
on the underlying assumptions and conclusions of this study.

Background
This section will start with a brief background on MCTS.
We will then discuss previous related work on player mod-
elling and imitation learning, to emphasise the place of our
contribution within the existing literature. The section ends
with discussion of our prior work and ongoing collaboration
with AI Factory.

Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a sequential decision
making algorithm which runs a large number of playouts
from the root state in order to provide statistical informa-
tion about the relative strength of the moves available from
that state. The statistical information gathered is used on-
line to determine the direction of tree expansion. The nature
of MCTS means that knowledge of game strategy is not re-
quired, however such heuristic knowledge is often used to
improve performance (Browne et al. 2012)

MCTS has been a focus for research since its invention
in 2006 (Chaslot et al. 2006; Coulom 2007; Kocsis and
Szepesvári 2006), and has shown state of the art perfor-
mance in a number of games, most notably Go (Gelly et
al. 2012; Silver et al. 2016). It creates an asymmetrical de-
cision tree, with specific focus upon building towards the
stronger decisions. The basic MCTS algorithm, which is ex-
ecuted once for each iteration in the provided budget is:

• Selection: A child node of the root node is selected using a
tree policy. Selection continues until the node selected is a
terminal node, or a node which has unexpanded children.

• Expansion: If the selected node is non-terminal, one child
node is randomly selected for expansion.

• Simulation: A default policy, often random, creates a
playout of the game from the expanded node to the end.

• Back-propagation: The result of the playout is back-
propagated through the tree until it reaches the root.

One of the most commonly used MCTS tree policies
is Upper Confidence Bound for Trees (UCT) (Kocsis and
Szepesvári 2006). UCT treats the selection of a node for
expansion as a multi-arm bandit problem: each node in a
partial search tree is assigned a value that describes its aver-
age expected reward, calculated from previous iterations. On
each iteration the algorithm selects a node that maximises:

UCT = Xj + C

√
lnn

nj
(1)

where Xj is the average expected reward of the child node
j, C is an exploration constant, n is the number of times
the parent node has been visited, and nj is the number of
times the child node j has been visited. This formula allows
control of the balance between exploitation and exploration
by setting the constant C.

A wide variety of MCTS variants and enhancements have
been investigated (Browne et al. 2012). One specific vari-
ant of relevance to this work is Information Set Monte Carlo
Tree Search (ISMCTS) (Cowling, Powley, and Whitehouse
2012), a variant designed to handle games of imperfect
information. The principle difference between MCTS and
ISMCTS is that a new determinization of the root game state
is created on each iteration, meaning iterations are split be-
tween different determinations of the game with a distribu-
tion which approximates the likelihood of that determiniza-
tion occurring. The work of this paper is based on ISMCTS.

Emulating Human Play
A lot of previous research has been focused on using game-
play traces to learn a model for predicting the behaviour
of a human player. Synnaeve and Bessiere (2011) created
a Bayesian model for predicting the opening of opponents
in the real-time strategy game StarCraft by learning the pa-
rameters of the model from game logs with labeled open-
ings. Dereszynski et al. (2011) used replays from StarCraft
to learn a Hidden Markov Model for predicting high-level
strategic behaviour. These models were integrated into the
existing agents in order to improve their ability to predict

the strategy of a human player, but the models were not
used to bias the agents towards a human play style. Simi-
larly, the recent high profile success of Google DeepMind’s
AlphaGo also involved modelling human play from a large
dataset of expert games (Silver et al. 2016). However, Al-
phaGo’s goal was to maximise game playing ability and the
resultant playstyle was frequently commented on to be un-
conventional. In contrast, our priority in this work was on
the emulation of human play. In this work, the resultant play
strength of the agent was a secondary objective and one we
aimed to maintain equivalent performance in, not maximise.

Another area of interest, more closely related to our goal,
is developing an agent that imitates a human player. Togelius
et al. (2007) divide behaviour imitation into two categories:
direct and indirect. Direct imitation involves using a super-
vised learning method on a dataset that contains a list of
states in a game, together with the action that a human player
has taken in that state. The result of the training process is a
model that chooses an action to perform given a description
of the state of the game. Once the model has been trained, it
cannot be modified, so the resulting agent is incapable of
learning from its mistakes, which is one of the main cri-
tiques of direct modeling. Another problem was found by
Togelius et al. (2007) when they used direct modeling to de-
velop an AI agent for a racing game: whenever the controller
was in a state that it had not seen before, it was not able to
react in a sensible way, leading to a car crash that it could
not recover from. Despite these problems, there have been
a number of attempts to create a human-like agent using
direct imitation. Thurau et al. (2007) used Bayesian imita-
tion learning to teach an agent to navigate through a maze
in Quake II using recordings of human players. The results
of their experiments showed that the agents appear human-
like, but their functionality is limited to imitating movement
and would not be able to play against a human player. This
again differs from the method we present in this paper, as
our intention was to develop an agent that whilst human-like
could act rationally in states it had not previously observed
and could feasibly be deployed within the game.

Alternatively, indirect imitation involves modifying the
fitness function of an existing agent. Unlike direct imitation,
this approach biases an agent towards a certain behaviour
instead of fully specifying it, which overcomes the prob-
lem of the agent being unable to act when in an unfamiliar
state. This approach is the closest in relation to the method
we propose. An existing example of this trained agents to
play Super Mario Bros using both direct and indirect imi-
tation methods (Ortega et al. 2013). The results of their ex-
periments show that the agents with indirect imitation were
perceived as human-like significantly more often than the
agents with direct imitation, and also performed better. How-
ever, these agents did not perform as well as the agents
that were trained just to play well, without any concern for
believability. Therefore, there is a compromise in previous
work between maximising the performance of an agent and
making it appear more human-like. As we will show in the
remainder of the paper, the approach we propose is capable
of both playing in a more human-like way and maintaining
a play strength equivalent to an unbiased MCTS agent.

AI Factory Spades
AI Factory1 is a UK-based independent game developer, cur-
rently specialising in implementations of classic board and
card games for Android mobile devices. Spades is a four-
player trick-taking card game, especially popular in the USA
but played worldwide (Pagat 2016). Spades is a partnership
game, with North and South in coalition against East and
West. Spades has some similarities with, but slightly sim-
pler rules than, the game of Bridge. AI Factory’s implemen-
tation of Spades has been downloaded more than 5 million
times, with an average review score of 4.4/5 from more than
180, 000 ratings on the Google Play store2. The game is a
single-player implementation, in which the user plays with
an AI partner against two AI opponents.

The results reported in this paper are based on data col-
lected between 1st April 2013 and 12th November 2013
from a random sample of approximately 1

32 of players repre-
senting 690 unique players and 27, 592 full games. Specifi-
cally, upon completion of a game, the following information
is captured via Google Analytics:
• The player’s anonymised identifier and country;
• Historical win and loss counts for each game level and for

each AI character;
• The version number of the game;
• The random seed used for this game (the same pseudo-

random number generator is used for card deals and for
ISMCTS simulations);

• Parameters for the chosen AI players;
• Rule settings for this game;
• The final score;
• The sequence of bidding and trick play moves.

In previous work we collaborated with AI Factory to im-
plement ISMCTS-based AI players (Whitehouse et al. 2013)
and then analysed the data collected to gain insights into the
playstyles of both the AI and human players (Cowling et al.
2015). One conclusion from the previous analysis was that
in certain contexts the AI players were acting significantly
different to human players, as evidenced by differences in
the distributions of abstract moves chosen given the game
state. Following on from this observation, and assuming that
an AI that more closely emulates human play would be more
enjoyable, our aim in this work was to reduce this difference
in the distribution of moves chosen. This could be done by
direct imitation using a probabilistic model of the human
moves but, as discussed earlier, this could result in unde-
sirable behaviour if the agent needs to make a decision in
a new context. Furthermore, as the difficulty of the game
was deemed to be appropriate given the previous analysis
of player win rates (Cowling et al. 2015) and reviews of the
game on the App store, maintaining a play strength equiva-
lent to the existing AI was also necessary.

1http://www.aifactory.co.uk
2https://play.google.com/store/apps/

details?id=uk.co.aifactory.spadesfree&hl=en

Therefore, we propose an indirect imitation solution with
the dual aims of:

1. Reducing the difference in the distribution of abstract
moves chosen by human and AI players;

2. Maintaining a comparable play strength to the existing
ISMCTS agents.

In the next section we will cover our approach to mod-
elling the human play, which we will then use in the section
afterwards to bias an ISMCTS agent.

Modelling Human Play
To model human play the method proposed by Xiao and
Müller (2016) was used as a foundation. However, to reduce
the number of parameters, we removed the pairwise interac-
tions between features from their model ranking the relative
strength of moves. As our method of bias involves calcu-
lating the strength of each move in the search tree, using a
large number of parameters could significantly increase the
response time of an agent which would be unsuitable for de-
ployment in a mobile game such as AI Factory Spades.

Formally, the strength Em of a move m is calculated as a
sum of weights w of the features f that apply to the move:

Em =
∑
f∈m

wf (2)

where the features f are domain specific, but listed in the
Appendix for completeness of the report. Given N moves
{m1,m2, ...,mN}, the probability of a human player choos-
ing a move mi is calculated using an exponential model:

P (mi is chosen) =
exp(Emi)∑N
j=1 exp(Emj)

(3)

The goal of the algorithm is to find the parameters of the
model that maximise the likelihood of the training data. To
achieve this, the following loss function is used for state sj :

lj = − ln
exp(Em∗

j
)∑|Γ(sj)|

i=1 exp(E
mi

j
)

= −Em∗j
+ ln

∑|Γ(sj)|
i=1 exp(Emi

j
)

(4)
where Γ(sj) is the set of all legal moves in the state sj , and
m∗j is the move chosen by the human player. This model was
fit by stochastic gradient decent, with validation-based early
stopping (Prechelt 1998). As stochastic gradient descent
may require multiple passes through the data, the samples in
the training set were shuffled before each pass to avoid bi-
asing the gradient. The training process was performed with
learning rate α = 0.003 and batch size n = 200. The gradi-
ent of the loss function lj for the parameter θf of the feature
f is calculated as:

∇jθf = −I(f ∈ m∗j) +

∑|Γ(sj)|
i=1 exp(Emi

j
)I(f ∈ mi

j)∑|Γ(sj)|
i=1 exp(Emi

j
)

(5)
where I(f ∈ mi

j) equals 1 if the feature f applies to the
move mi

j , and 0 otherwise.

For each card played by a human player, a competition
was created, in which all moves that were legal in that
game state were viewed as contestants, and the move cho-
sen by the player was declared a winner of this competi-
tion. The dataset of competitions was further divided into
3 subsets: training data (189,770 competitions), validation
data (63,200 competitions), and test data (63,200 competi-
tions). The mean test accuracy of the model from 5 repeats
of the training process was 44.96%. For comparison, the test
accuracy of a randomly guessing model was 29.39%. As our
aims were emulating human play, these intermediate results
are included for completeness of the report and to emphasise
that it is not necessary to maximise the predictive accuracy
of the player model for the resultant playstyle of the agent to
more closely resemble human play.

In the next section we will discuss the method of integrat-
ing this model into the ISMCTS agent and evaluate the com-
bined system of modelling human play and biasing ISMCTS
against our dual aims.

Biasing Monte Carlo Tree Search
To incorporate the model of human play, the formula for cal-
culating the UCT score in the baseline ISMCTS agent was
modified to include a bias term based on the Bradley-Terry
value. The updated UCT score of a node i was calculated as:

UCT (i) = Xi + 0.7

√
lnn

ni
+CBT

√
DR

n+DR
P (mi) (6)

where P (mi) is the probability of the move corresponding
to the node i being chosen by a human player, calculated
using Equation 3. CBT is a parameter that controls the influ-
ence of the bias on the UCT score, and DR controls the rate
at which the influence of the bias decreases with the number
of parent node visits. This form of integrating the model of
human play was based upon the method of knowledge bias,
a technique used previously by Ikeda and Viennot (2014) to
integrate prior knowledge into a MCTS agent for the game
Go. To set the parameters CBT and DR, we performed an
exploratory analysis (illustrated in Figure 1) of 26 combi-
nations of settings and obtained the difference in abstract
move distribution compared to human play measured by the
Kullback-Leibler (KL) divergence (Kullback 1968) and the
win rate compared to a baseline ISMCTS player over 200
games. Given our dual aims, settings that minimise the KL-
divergence and maximise the win rate are desireable.

For CBT = 0.1 there seems to be a curvilinear rela-
tionship between DR and KL-divergence: for DR in range
[50, 100] the value of KL-divergence decreases rapidly, but
forDR in range [100, 1000] it starts to increase instead. This
behaviour could be caused by the bias having too strong an
effect on the UCT score. The Bradley-Terry model was not
intended to be used as a stand-alone algorithm for describ-
ing agent’s behaviour, but rather as an algorithm for biasing
an existing agent. If it is given too much weight in the UCT
equation, the agent may start to perform poorly. Even though
the bias term is supposed to bias an agent towards human-
like behaviour, using a stronger bias may result in larger KL-
divergence. This situation is similar to a novice player try-
ing to play purely by imitating professional players. She/he

Figure 1: The effect of the bias parameters CBT andDR on:

(a) Difference in move distribution compared to human play

(b) Win Rate (%) against a baseline ISMCTS player

may perform moves that are generally considered good, but
without having an appropriate strategy in mind and without
understanding the state of the board he/she is likely to lose.
As the value of DR increases, the weight of the bias starts
to decrease at a slower rate, resulting in the bias having a
stronger effect on agent’s behaviour. Eventually the effect
becomes too strong and KL-divergence starts to increase.

For other values of CBT the relationship is negative: as
the value of DR increases, the value of KL-divergence de-
creases. It may be possible to reduce KL-divergence fur-
ther by choosing larger values of DR but, considering Fig-
ure 1(b), this configuration is likely to result in a win rate
of less than 50%. Given our secondary aim of maintaining
an equivalent playing strength (i.e. a 50% win rate) larger
values of DR were not tested. Of all the parameter settings
that achieved a win rate of at least 50%, CBT = 0.03 and
DR = 1000 produced the smallest KL-divergence and were
therefore considered as the best configuration for the bias.

After selecting the bias parameters, we conducted further
experiments to provide an unbiased evaluation of the effect
of the bias on the performance and playing style of the base-
line agent. Ten sets of 50 games were played between a part-
nership of baseline, unbiased ISMCTS agents and a part-
nership of biased ISMCTS agents, and for each set the win
rate, average response time, and the probability distribution
of abstract moves of each agent type were recorded. The
biased player had an average win rate of 49.6% with 95%
confidence interval of±3.4%. This indicates that the perfor-
mance of the biased agent is comparable to the performance

Table 1: KL-divergence in the distribution of abstract moves
chosen by the AI players compared to human players

Baseline ISMCTS AIFactory Spades Biased Agent
0.1142 0.0981 0.0291

of the baseline ISMCTS agent. The average response time
of the biased player in each set of games was within±30 ms
of the response time of the baseline agent, so again they are
comparable in terms of our secondary aim of maintaining
equivalent performance.

Given that our secondary objective of maintaining equiv-
alent playing strength has been demonstrated, we now eval-
uate the primary objective of emulating human play by min-
imising the difference in moves chosen. Specifically, Table 1
shows the KL-divergence between the distribution of the ab-
stract moves chosen by the AI players (the baseline ISMCTS
agent we modified, the ISMCTS agent deployed in AI Fac-
tory Spades and the biased agent we created for this study)
compared to the human players. These values are given to
quantify the reduction in difference in playstyle between AI
players and human players. The results show a large im-
provement caused by including bias, as smaller values rep-
resent behaviour closer to the human distribution and, there-
fore, closer to emulating human play.

To provide a more detailed look at the specific changes be-
tween the previously deployed agent and the biased agent we
have proposed in this paper, Figure 2 displays the mean fre-
quency and standard deviation each abstract move is played
by the AIFactory Spades ISMCTS agent (referred to as Orig-
inal AI Player), our biased player, and human players. In
these graphs an abstract move represents the effect of a card
that is played given the context the card is played in. For
Spades, this is more informative than considering the spe-
cific card played as the same card can have significantly dif-
ferent effect on the game dependent on the cards already
played. In particular we note the large changes in usage of
the abstract move type Follow Duck Other3 in Figure 2(c)
and Follow Duck Highest in Figure 2(d).

These results empirically demonstrate that our biased
player also satisfies our aims of reducing the difference in
the distribution of abstract moves chosen by human and AI
players. Compared to both the AIFactory Spades ISMCTS
agent and a baseline ISMCTS agent, the biased player has a
distribution of abstract moves that is much closer to the dis-
tribution of abstract moves played by human players. In ad-
dition, both win rate and response time of the biased player
are comparable to those of the baseline player, indicating
that it is possible to emulate human play without having a
negative impact on performance.

3Due to space constraints, we have chosen not to give more de-
tails on each of the abstract moves as they are domain specific and
we want to emphasise the general applicability of our methodol-
ogy. Readers interested in this specific application can find a richer
description of the abstract moves in Cowling et al. (2015).

Figure 2: Comparison of abstract move frequencies among
human players, AIFactory Spades ISMCTS agent and our
biased agent. (a)-(e) show, within each category, how fre-
quently each agent plays their (a) only, (b) lowest, (d) high-
est non-boss, (e) boss, or (c) any other card in that category.

(a) (b)

(c) (d)

(e)

Discussion
Before concluding this paper, it is important for us to con-
sider three underlying assumptions in this study each of
which could become topics for future work. Firstly, the mod-
ifications proposed here were applied to a baseline ISMCTS
agent and not directly to the AIFactory ISMCTS implemen-
tation. This was partially to focus the experimentation on
the modifications being made and to isolate the cause of the
effect in changing the agents playstyle, but was also due to
necessarily restricted access to the source code of the com-
mercial game. Similarly the version of Spades used was a
command line implementation of the core game mechanics
to enable rapid iteration of experiments and not the AIFac-
tory codebase. Therefore, we have assumed throughout this
study that the effect of the modifications on the ISMCTS
player in our implementation of Spades will be similar to
the effect if applied in future work to the ISMCTS agent in
the commercial game. We feel this is a justifiable assumption
given that previous work on our implementation of Spades

resulted in similar beneficial gains when transferred to the
commercial game (Whitehouse et al. 2013).

Secondly, we have amalgamated all gameplay data into
one model of human play. This assumes that there is only
one playstyle that all humans use in the game. Whilst this
is a large assumption, we justified this internally due to the
outcomes of an early study in this work that attempted to
find clusters of differing playstyle amongst the gameplay
traces. Specifically, we generated decision tree (Breiman et
al. 1984) models of each individual player’s behaviour and
then clustered these models using K-medoids (Park and Jun
2009) and a partial tree kernel (Moschitti 2006). The re-
sults clearly showed 4 distinct clusters but, on inspection of
the resultant medoid trees, no significant qualitative differ-
ence in the playstyle of each cluster was observed. There-
fore, our conclusion at this time is that amalgamating all
playstyles is potentially the cause of the relatively low accu-
racy of our player model but, because the resultant agent be-
haviour sufficiently match our dual objectives in this work,
this assumption is currently justifiable for this application.
In future work, we may explore alternative methods of clus-
tering game behaviour data (Bauckhage, Drachen, and Sifa
2015) (e.g. graph edit distance (Robles-Kelly and Hancock
2005)). In applications where such clusterings are available,
this could produce multiple different agents each of which
emulate a unique human playstyle.

Finally, as is common for research on commercial game
AI, our motivation is ultimately to create agents that are
fun to play with or against. In this work we have assumed
that agents that more closely emulate human play are more
enjoyable to play with. This hypothesis is often underpin-
ning work on imitation learning in game contexts, but at this
time is relatively under studied and requires further research
to validate. Therefore, our contribution is currently specif-
ically to emulation of human play but could be extended
in future work to conclude effects on enjoyment provided
thorough evaluation to suitable metrics (Mekler et al. 2014;
Fang et al. 2010).

Conclusions
In conclusion, we have presented a method for biasing
MCTS with gameplay trace data to emulate human play. Our
specific study used data from AIFactory Spades, a commer-
cial mobile game that uses ISMCTS to control non-player
characters. Previous work had shown that the existing non-
player characters acted significantly different to human play-
ers, but this study empirically demonstrates that adding a
bias towards models of human play can reduce this differ-
ence whilst maintaining play strength equivalent to unmod-
ified MCTS agents. Furthermore, provided the availability
of human gameplay traces and an existing MCTS solution,
this method could feasibly be applied to any game with a
discrete action space.

Acknowledgments.
This work was conducted in the Digital Creativity Labs
(www.digitalcreativity.ac.uk), jointly funded by the EPSRC,
AHRC and InnovateUK under grant no EP/M023265/1.

Appendix: Model Features
The table below lists the features used in the model of human
play and their resultant weights. The features were originally
chosen as an exhaustive coverage of the abstract moves that
a player can make. These were then extended for this work to
capture gameplay states where there was the most significant
differences in the distribution of human moves compared to
agent moves. Interested readers can find a richer description
of their implementation in Cowling et al. (2015).

Feature Weight
Lead Non Spade Boss 1.62
Lead Spade Boss 1.17
Trump Steal Boss −0.03
Follow Steal Boss 1.12
Lead Non Spade Highest −0.06
Lead Spade Highest −1.05
Trump Duck Highest 0.05
Trump Steal Highest −0.63
No Follow Highest 0.72
Follow Duck Highest −1.88
Follow Steal Highest 0.36
Lead Non Spade Lowest −0.34
Lead Spade Lowest −0.28
Trump Duck Lowest −0.15
Trump Steal Lowest 1.56
No Follow Lowest −0.10
Follow Duck Lowest 0.16
Follow Steal Lowest 0.75
Lead Non Spade Other −1.27
Lead Spade Other −1.60
Trump Duck Other −0.51
Trump Steal Other −1.14
No Follow Other −1.90
Follow Duck Other −1.86
Follow Steal Other 0.28
Lead Non Spade Single 1.18
Lead Spade Single 0.63
Trump Duck Single 0.10
Trump Steal Single 1.17
No Follow Single 0.88
Follow Duck Single 0.04
Follow Steal Single 1.03
Steal Lowest If Last Turn 0.63
Duck Highest When Needing Tricks −0.39
Duck Lowest When Boss Cards Are in Hand −0.47
Did Not Trump Steal −0.92
No Follow Highest With Potential Boss −0.49
Steal Unwanted Tricks −1.23
No Follow Lowest When Needing Tricks 1.22
Lead With Suit Of Smallest Size 0.66
Follow Duck Highest For Unwanted Tricks 2.21
Follow Duck Highest 1.19
With a Small Value Card

References
Bauckhage, C.; Drachen, A.; and Sifa, R. 2015. Clustering
game behavior data. IEEE Transactions on Computational
Intelligence and AI in Games 7(3):266–278.
Bohannon, J. 2010. Game-miners grapple with massive
data. Science 330(6000):30–31.
Breiman, L.; Friedman, J.; Stone, C. J.; and Olshen, R. A.
1984. Classification and regression trees. CRC press.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Compu-
tational Intelligence and AI in Games 4(1):1–43.
Chaslot, G. M. J.-B.; Saito, J.-T.; Bouzy, B.; Uiterwijk, J.
W. H. M.; and van den Herik, H. J. 2006. Monte-Carlo
Strategies for Computer Go. In Proceedings of the Benelux
Conference on Artificial Intelligence, 83–91.
Coulom, R. 2007. Efficient Selectivity and Backup Opera-
tors in Monte-Carlo Tree Search. In Proceedings of the 5th
International Conference on Computers and Games, LNCS
4630, 72–83.
Cowling, P. I.; Devlin, S.; Powley, E. J.; Whitehouse, D.; and
Rollason, J. 2015. Player preference and style in a leading
mobile card game. IEEE Transactions on Computational
Intelligence and AI in Games 7(3):233–242.
Cowling, P.; Powley, E. J.; and Whitehouse, D. 2012. Infor-
mation set Monte Carlo Tree Search. IEEE Transactions on
Computational Intelligence and AI in Games 4(2):120–143.
Dereszynski, E. W.; Hostetler, J.; Fern, A.; Dietterich, T. G.;
Hoang, T.-T.; and Udarbe, M. 2011. Learning probabilis-
tic behavior models in real-time strategy games. In AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment.
El-Nasr, M. S.; Drachen, A.; and Canossa, A. 2013. Game
analytics: Maximizing the value of player data. Springer
Science & Business Media.
Fang, X.; Chan, S.; Brzezinski, J.; and Nair, C. 2010. Devel-
opment of an instrument to measure enjoyment of computer
game play. International Journal of Human-Computer In-
teraction 26(9):868–886.
Gelly, S.; Kocsis, L.; Schoenauer, M.; Sebag, M.; Silver, D.;
Szepesvári, C.; and Teytaud, O. 2012. The grand challenge
of computer Go: Monte Carlo Tree Search and extensions.
Communications of the ACM 55(3):106–113.
Ikeda, K., and Viennot, S. 2014. Efficiency of static knowl-
edge bias in Monte-Carlo Tree Search. In Computers and
Games. Springer. 26–38.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
Monte-Carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Kullback, S. 1968. Information theory and statistics.
Courier Corporation.
Mekler, E. D.; Bopp, J. A.; Tuch, A. N.; and Opwis, K.
2014. A systematic review of quantitative studies on the
enjoyment of digital entertainment games. In Proceedings

of the 32nd annual ACM conference on Human factors in
computing systems, 927–936. ACM.
Moschitti, A. 2006. Efficient convolution kernels for depen-
dency and constituent syntactic trees. In Machine Learning:
ECML 2006. Springer. 318–329.
Ortega, J.; Shaker, N.; Togelius, J.; and Yannakakis, G. N.
2013. Imitating human playing styles in Super Mario Bros.
Entertainment Computing 4(2):93–104.
Pagat. 2016. Spades. http://www.pagat.com/
boston/spades.html. Accessed: May 20th 2016.
Park, H.-S., and Jun, C.-H. 2009. A simple and fast algo-
rithm for k-medoids clustering. Expert Systems with Appli-
cations 36(2):3336–3341.
Prechelt, L. 1998. Early stopping-but when? In Neural
Networks: Tricks of the trade. Springer. 55–69.
Robles-Kelly, A., and Hancock, E. R. 2005. Graph edit dis-
tance from spectral seriation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27(3):365–378.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529(7587):484–489.
Synnaeve, G., and Bessiere, P. 2011. A Bayesian model for
opening prediction in RTS games with application to Star-
Craft. In IEEE Conference on Computational Intelligence
and Games, 281–288.
Thurau, C.; Paczian, T.; Sagerer, G.; and Bauckhage, C.
2007. Bayesian imitation learning in game characters. In-
ternational journal of intelligent systems technologies and
applications 2(2-3):284–295.
Togelius, J.; De Nardi, R.; and Lucas, S. M. 2007. Towards
automatic personalised content creation for racing games. In
2007 IEEE Symposium on Computational Intelligence and
Games, 252–259.
Whitehouse, D.; Cowling, P. I.; Powley, E. J.; and Rolla-
son, J. 2013. Integrating Monte Carlo Tree Search with
knowledge-based methods to create engaging play in a com-
mercial mobile game. In AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment.
Xiao, C., and Müller, M. 2016. Factorization ranking model
for move prediction in the game of Go. In AAAI Conference
on Artificial Intelligence.
Zook, A.; Harrison, B.; and Riedl, M. O. 2015. Monte-
carlo tree search for simulation-based strategy analysis. In
Proceedings of the 10th Conference on the Foundations of
Digital Games.

